Magnetic nanoparticle-polyelectrolyte interaction: a layered approach for biomedical applications.

نویسندگان

  • John E Wong
  • Akhilesh K Gaharwar
  • Detlef Müller-Schulte
  • Dhirendra Bahadur
  • Walter Richtering
چکیده

This study describes the surface modification of magnetic nanoparticles using two different approaches. The first approach consists of an in situ modification of the surface during the precipitation of the magnetic nanoparticles while the second approach consists of a post-modification of the surface after the formation of the magnetic nanoparticles. In the latter case, we adopted the Layer-by-Layer assembly of polyelectrolyte multilayers of poly(diallyl-dimethylammonium) chloride and poly(styrenesulfonate) to build a polymeric shell around the magnetic nanoparticle core, thereby intentionally conferring to this hybrid core-shell the same charge as the charge of the polyelectrolyte deposited in the last layer. Electrophoretic measurements reveal charge reversal indicating successful Layer-by-Layer deposition while magnetization studies show that the superparamagnetic behavior is not much affected by the presence of polyelectrolytes on the modified magnetic nanoparticles. Fourier transform infrared and thermogravimetry analysis results underline that the various polyelectrolytes employed, in both the methodologies adopted, were successfully bound to the nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Iron Oxide Nanoparticle Preparation for Biomedical Applications by Using Box-Behenken Design

Magnetic nanoparticles can bind to different drug delivery systems and can be used for drug targeting to a specific organ by using an external magnetic field as well as used in hyperthermia by heating in alternating magnetic fields. The characteristics of iron oxide nanoparticles are significantly affected by particle size, shape and zeta potential, among which the particle size plays the most ...

متن کامل

Synthesis and optimization of Chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering

Background: Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study is to synthesis and optimization of chitosan nanoparticles for industrial and biomedical applicati...

متن کامل

Synthesis of Three-Layered Magnetic Based Nanostructure for Clinical Application

The main objective of this research was to synthesize and characterize gold-coated Fe3O4 /SiO2 nanoshells for clinical applications. Magnetite nanoparticles (NPs) were prepared via co-precipitation. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm by using 0.9 M of NaOH at 750 rpm. The NPs were then m...

متن کامل

Exploring the cytotoxicity of CeO2 nanoparticles: A compendious approach

Metal oxide nanoparticles due to their antioxidant properties have attractedsignificant attention and exhibited good potential for use in cancer theranostics.Owing to the poor absorption in the physiological environment, they are anideal candidate to act as nanocarriers in targeted drug delivery and bioimaging.This feature can be successfully implemented in live monitori...

متن کامل

Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.

The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 8 8  شماره 

صفحات  -

تاریخ انتشار 2008